周峰泉导师介绍

2022-10-08 6246


导师介绍

 

学术带头人周峰泉教授,本科与硕士毕业于南京大学生物化学系,后前往美国纽约州立大学布法罗分校获得解剖与细胞生物学博士学位。在美国北卡罗来纳大学教堂山分校神经科学中心经过博士后培训后,2005-2022年在美国约翰斯-霍普金斯大学医学院(Johns Hopkins University School of Medicine)骨外科及神经科学系历任助理教授,副教授,和终身正教授。周峰泉教授2022年7月回国后担任浙江大学讲席教授,及浙江大学医学院附属邵逸夫医院神经再生转化中心负责人

周教授领导的科研团队长期致力于神经发育,衰老,神经损伤和修复相关的研究工作,尤其在神经再生的分子及细胞机制研究领域具有国际领先地位。周教授50多家学术杂志和世界各地许多基金机构评审文章或基金申请,包括中国自然科学基金重点基金评审,及国自然重点/面上/青年基金会审评委


科研方向

 

脑科学是中国科学研究未来发展的重点学科其中中枢神经衰老、损伤与再生医学研究在中国还处于起步阶段,因此具有广阔的发展前景。本实验室瞄准国际学术发展前沿和国家重大战略需求,旨在中国建立一个具有世界领先水平的,以多组学大数据分析、基因编辑、三维成像和多种生物医学工程技术为核心技术的神经损伤和修复再生医学研究中心,并在此过程中培养一批有学术竞争力的青年科学家。

 

除了神经发育相关疾病,几乎所有后发性脑损伤和疾病都导致神经环路(由轴突/树突组成)退化和神经元细胞死亡。所以神经再生有两层含义:一是保护神经元在损伤/疾病后的存活及促进组成神经环路的神经纤维在损伤后的重新生长;二是通过自身或外源其他类型细胞(干细胞或神经胶质细胞)产生新的神经元。我们认为神经再生医学是未来治疗大多数脑疾病,脑损伤的重要基石近期研究方向是利用已经成熟建立的实验技术系统,包括多组学检测和大数据分析基于CRISPR技术的高通量基因编辑与功能筛选,高分辨率活细胞成像,组织透明化及高分辨全脑/脊髓三维成像,各类大脑发育和神经损伤动物模型,在以下几个方向进行探索。

 

1)中枢神经系统损伤,修复,与再生研究,如脑损伤,脊椎损伤,和视网膜损伤与疾病 (青光眼黄斑病变及许多遗传性眼科疾病)。重点方向为细胞重编程和染色质重塑。

2哺乳动物神经系统细胞的成熟与衰老的调控机制及其在神经再生和神经退行性疾病中的作用。

3)基于单细胞测序技术结合人工智能的大数据分析策略,研究神经系统中各类细胞间的相互作用,描绘细胞-细胞相互作用图谱, 从而从多维度生理学(multi-dimensional physiology)角度了解神经系统疾病发生机制。

 

现在生物医学研究的特点是高技术、大数据、跨学科及多方合作,因此中心还会致力于多学科交叉研究解决生物医学中的一些关键问题。例如,神经衰老与退行性疾病,神经系统与其它组织(骨骼肌肉系统、心血管系统、营养代谢系统、癌症研究等)的相互作用与调控。神经再生转化心既开展独立的科学研究,也会依靠邵逸夫医院强大的临床背景与医院各科室积极合作,积极吸引投资进行研究成果的临床转化。



实验室简介

 

实验室位于浙江大学医学院附属邵逸夫医院新建的科研大楼,目前正在浙江大学和邵逸夫医院的支持下建立神经再生转化中心。实验室经费及空间充足,仪器设备除了所有常备的分子、生化和细胞生物学设备,还有设备完善的小动物显微手术室,眼科/运动/认知等行为学检测设备,单细胞工作站(10x Chromium X), 磁性细胞分选仪, 新型的具备超高分辨率的平铺光片显微镜等大型仪器设备。实验室拟配备各类科研人员20-25人,包括特聘正/副研究员、博士后、PI助手、科研助理和研究生。目前已有PI助手1名,行政主管1名,博士后1名,及科研助理2名。实验室长期招聘科研人员和学生,欢迎大家积极报名加入我们。除生物医学方向,我们也非常欢迎有较强数学或计算机背景的研究人员加入团队从事数据分析工作



实验室长期招聘:

 

(1)特聘正/副研究员: 提供科研启动经费一次性安家费支持申报研究生导师资格

(2)博士后研究员(浙江大学医学院博士后工作站):充分考虑博士后的发展和职业规划,大力支持博士后申报国家及省部级科研项目

(3)博士研究生:在导师的指导下独立开展感兴趣的脑科学/医学研究 (招生专业名称1:脑科学与脑医学,专业代码:1001Z3,招生专业名称2: 分子与细胞医学,专业代码:1001Z2)

(4)科研助理:实验室科研管理,独立或配合其他成员开展科研与临床转化工作。

有意向者,可以直接联系fzhou4@zju.edu.cn邮箱并抄送nierui@srrsh.com。如有未尽事宜请联系聂老师咨询。联系电话:13588409659,联系人:聂老师



实验室现有成员(从左到右):章靖(科研助理),周峰泉,周思语(博后),赵音珺(科研助理),聂睿(行政主管),杨树广(科研主管)



部分发布文章:


1. Zhou F-Q, Waterman-Storer CM, Cohan CS* (2002) Focal loss of actin bundles causes microtubule redistribution and growth cone turning.  Journal of Cell Biology157 (5): 839-849. (Cover image and highlighted article; a ‘must read’ article by Faculty of 1000)


2. Zhou F-Q, Zhou J, Dedhar S, Wu Y-H, Snider WD* (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein, APC. Neuron, 42(6): 897-912. (Highlighted article with preview; a ‘Must read’ article by Facultyof1000)


3. Zhou F-Q, Snider WD* (2005) GSK-3β and microtubule assembly in axons. Science, 308: 211-214. (Review)


4. Zhou F-Q, Walzer MA, Wu Y-H, Zhou J, Dedhar S, Snider WD*  (2006) Neurotrophins support regenerative axon assembly over CSPGs by an ECM-integrin independent mechanism. Journal of Cell Science, 119 (13): 2787-2796. (Cover image)

 

5. Kim W-Y, Zhou F-Q, Zhou J, Wang Y-M, Yoshimura T, Kaibuchi K, Woodgett J, Snider WD* (2006) Essential roles for GSK-3s and GSK-3 primed substrates in neurotrophin-induced and hippocampal axon growth.  Neuron, 52(6): 981-996.

 

6Dill J, Wang H, Zhou F-Q, Li S*(2008) Inactivation of Glycogen Synthase Kinase 3 promotes axonal growth and recovery in the CNS. Journal of Neuroscience, 28(36): 8914-28. (Highlighted by Science-Business exchange-SciBX)

 

7. Hur E-M, Zhou F-Q* (2010) GSK3 signaling in neural development. Nature Reviews Neuroscience, 11 (8). (Featured article)

 

8. Hur E-M, Yang I-H, Kim DH, Byun J, Saijilafu, Xu W-L, Nicovich PR, Cheong R, Levchenko A, Thakor N, Zhou F-Q* (2011) Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. PNAS, 108 (12). 

 

9. Hur E-M, Saijilafu, Lee BD, Kim SJ, Xu W-L, Zhou F-Q* (2011) GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules. Genes & Development, 25(18):1968-81.

10. Saijilafu, Hur E-M, Zhou F-Q* (2011) Genetic dissection of axon regeneration via in vivo electroporation of mouse adult sensory neurons. Nature Communications2: 543.

 

11. Hur E-M, Saijilafu, Zhou F-Q* (2011) Growing the growth cone: remodelling the cytoskeleton to promote axon regeneration. Trends in Neurosciences, 35(3).  (Cover featured article)

 

12. Saijilafu, Zhang B-Y, Zhou F-Q* (2013) Signaling pathways that regulate axon regeneration. Neurosci. Bull. 29(4): 411-20.

13. Saijilafu, Hur E-M, Liu C-M, Jiao Z-X, Xu W-L, Zhou F-Q* (2013) PI3K-GSK3 pathway regulates mammalian axon regeneration by induction of Smad1. Nature Communications4: 2690.

14. Liu C-M, Wang R-Y, Saijilafu, Jiao Z, Zhang B-Y, Zhou F-Q* (2013) MicroRNA-138 and Sirt1 form a mutual negative feedback loop to regulate axon regeneration. Genes & Development, 27(13): 1473-83.

 

16. Nicovich PR*, Zhou F-Q* (2014) Acquisition frame rate affects microtubule plus-end tracking analysis. Nature Methods, 11(3): 219-220.

 

17. Lemmon et al. (2014). Minimum information about a spinal cord injury experiment (MIASCI) - a proposed reporting standard for spinal cord injury experiments. J. Neurotrauma. 31(15): 1354-61.

 

18. Jiang J, Liu C-M, Zhang B-Y, Wang XW, Zhang M, Saijilafu, Zhang S-R, Hall P, Hu Y-W, Zhou F-Q* (2015) MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3β expression. Cell Death & Disease, 6:e1865

 

19. Goldberg et al. (2016) Report on the National Eye Institute Audacious Goals Initiative: Regenerating the Optic Nerve. Invest Ophthalmol Vis Sci. 57(3):1271-5.

20. Kim YS, Anderson M, Park K, Zheng Q, Agarwal A, Gong C, Saijilafu, Young L, He S, LaVinka PC, Zhou F-Q, Bergles D, Hanani M, Guan Y, Spray DC, Dong X* (2016) Coupled activation of primary sensory neurons contributes to chronic pain. Neuron, 91(5): 1085-96

 

21. Tomlinson RE, Li Z, Zhang Q, Goh BC, Li Z, Thorek DL, Rajbhandari L, Brushart TM, Minihiello L, Zhou F-Q, Venkatesan A, Clemens TL* (2016) NGF-TrkA signaling by sensory nerves coordinates vascularization and ossification of developing endochondral bone. Cell Reports, 16 (10): 2723-35. 

 

22. Gorshkov K, Mehta S, Ramamurthy S, Ronnett GV, Zhou F-Q, Zhang J* (2016) AKAP-mediated feedback control of cAMP gradients in developing hippocampal neurons. Nature Chemical Biology, 13, 425-31.

23.Tang G-B, Zeng Y-Q, Liu P-P, Mi T-W, Zhang S-F, Dai S-K, Tang Q-Y, Yang L, Xu Y-J, Yan H-L, Du H-Z, Teng Z-Q*, Zhou F-Q*, Liu C-M* (2017) The histone H3K27 demethylase UTX regulates synaptic plasticity and cognitive behaviour in mice. Frontiers in Molecular Neuroscience, 10:267.

 

24. Li C-J, Chai Y, Wang L, Gao B, Chen H, Gao P, Zhou F-Q, Luo X, Crane JL, Yu B, Cao X, Wan M* (2017) Programmed cell senescence in skeleton during puberty. Nature Communications, 8(1):1312.


25. Wang X-W, Li Q, Liu, C-M, Hall P, Jiang J-J, Liu C-M, Katchis CD, Kang S, Dong BC, Li S, Zhou F-Q* (2018) Lin28 signaling supports mammalian PNS and CNS axon regeneration. Cell Reports, 24(10): 2540-2552.

 

26. Ma J-J, Xu R-J, Ju X, Wang W-H, Luo Z-P, Liu C-M, Yang L, Li B, Chen J-Q, Meng B, Yang H-L, Zhou F-Q*, Saijilafu* (2019) The telomerase reverse transcriptase (TERT) and p53 regulate mammalian PNS and CNS axon regeneration downstream of c-Myc. Journal of Neuroscience, 39(6): 9107-9118.

 

27. Costa AR, Sousa SC, Pinto-Costa R, Mateus JC, Lopes CDF, Rosa D, Machado D, Pajuelo L, Wang X-W, Zhou F-Q, Pereira AJ, Sampaio P, Rubinstein B, Pinto IM, Lampe M, Aguiar P, Sousa MM* (2020) The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction. Elife9:e55471  

 

28. Wang X-W#, Yang S-G#, Zhang C#, Hu M-W, Qian J, Ma J-J, Zhang Y-C, Yang B-B, Weng Y-L, Ming -GL, Kosanam AR, Saijilafu*, Zhou F-Q* (2020) Knocking out non-muscle myosin IIA/B in retinal ganglion cells promotes long distance optic nerve regeneration. Cell Reports, 31(3): 107537.

 

29. Nathan F, Ohtake Y, Wang S, Jiang X, Sami A, Guo H, Zhou F-Q, Li S* (2020) Upregulating Lin28a promotes axon regeneration in adult mice with optic nerve and spinal cord injury, Molecular Therapy, 28(8):1902-1917.

30. Qian C, Zhou F-Q* (2020) Updates and challenges of axon regeneration in the mammalian central nervous system. Journal of Molecular Cell Biology, 12(10): 798-806.

 

31. Yang S-G, Li C, Peng X, Teng Z, Liu C-M*, Zhou F-Q* (2020) Strategies to promote long distance optic nerve regeneration. Frontiers in Cellular Neuroscience, 14:119.

 

32. Qian C, Dong BC, Wang X-Y, Zhou F-Q* (2020) In Vivo Transdifferentiation for CNS Neuronal Replacement and Functional Recovery. The FEBS Journal, 288 (16): 4773-4758.

33. Li Q, Qian C, Feng H, Lin T, Zhu Q, Huang Y, Zhou F-Q* (2021) N6-methyladenine DNA demethylase ALKBH1 regulates mammalian axon regeneration. Neuroscience Bulletin, 37(6): 809-814.

34. Tower  RJ, Li Z, Cheng Y-H, Wang X-W, Rajbhandari L, Zhang Q, Negri S, Uytingco CR, Venkatesan A, Zhou F-Q, Cahan P, James AW, Clemens TL* (2021) Spatial transcriptomics reveals a role for sensory nerves in preserving cranial suture patency through modulation of BMP/TGFβ signaling. PNAS, 118(42): e2103087118

 

35. Zheng Q, Xie W-R, Luckemeyer DD, Lay M, Wang X-W, Dong X, Limjunyawong N, Ye Y, Zhou F-Q, Strong J, Zhang J-M, Dong X* (2022) Synchronized Cluster Firing, a distinct form of sensory neuron activation, drives Mediates Spontaneous Pain. Neuron, 110(2): 209-220.


36. Yang S-G#, Wang X-W#, Qian C, Zhou F-Q* (2022) Reprogramming neurons for regeneration, the fountain of youth. Progress in Neurobiology, 214:102284.


37. Xin Y, Lyu P, Jiang J, Zhou F-Q, Wang J, Blackshaw S, Qian J* (2022) LRLoop: Feedback loops as a design principle of cell-cell communications. Bioinformatics, btac447. 

 

38. Zhang C#, Hu M-W#, Wang X-W, Cui X, Liu J, Huang Q, Cao X, Zhou F-Q, Qian J, He S-Q, Guan Y* (2022) scRNA-sequencing reveals subtype-specific transctiptomic perturbations in DRG neurons of Pirt-EGFPf mice in neuropathic pain condition. eLife11, e76063.

 

39. Ding L, Chu W, Xia Y, Shi M, Yuan X, Qiu J, Li T, Luo L, Zhou F-Q*, Deng Y-B* (2022) UCHL1 inhibited by A1 astrocytes facilitates aggregates clearance to promote neural stem cell activation after spinal cord injury.  (in revision), bioRxiv: doi: https://doi.org/10.1101/2021.09.23.461600

 

40. Wang X-W#, Yang S-G#, Hu M-W#, Wang R-Y#, Zhang C,  Kosanam AR, Ochuba AJ, Jiang J-J, Luo X, Qian J, Liu C-M*, Zhou F-Q* (2022) Histone methyltransferase EZH2 coordinates mammalian axon regeneration via epigenetic regulation of key regenerative pathways. Journal of Clinical Investigation (in revision) bioRxiv 2022.04.19.488817; doi: https://doi.org/10.1101/2022.04.19.488817 

 

41. Zhang M, Zhang Y, Xu Q, Crawford J, Qian C, Wang G, Pletnikov MV, Qian J, Dong X, Liu C-M*, Zhou F-Q* (2022) Neuronal histone methyltransferase EZH2 regulates neuronal morphogenesis, synaptic plasticity, and cognitive behavior. Neuroscience Bulletin (in revision) BioRxiv,doi: https://doi.org/10.1101/582908

 

上一篇

previous

下一篇

Next article